In this post I want to show you how to work with Apache Flink.
Apache Flink is an open source platform for distributed stream and batch data processing. Flinkās core is a streaming dataflow engine that provides data distribution, communication, and fault tolerance for distributed computations over data streams. Flink also builds batch processing on top of the streaming engine, overlaying native iteration support, managed memory, and program optimization.
What we are going to build
The idea is to use Apache Flink to process the stream of weather data measurements from 1,600 U.S. locations.
The processed data will be written into an Elasticsearch database.
Source Code
You can find the full source code for the example in my git repository at:
Dataset
The data is the Quality Controlled Local Climatological Data (QCLCD):
Quality Controlled Local Climatological Data (QCLCD) consist of hourly, daily, and monthly summaries for approximately 1,600 U.S. locations. Daily Summary forms are not available for all stations. Data are available beginning January 1, 2005 and continue to the present. Please note, there may be a 48-hour lag in the availability of the most recent data.
The data is available as CSV files at:
We are going to use the data from March 2015, which is located in the zipped file QCLCD201503.zip
.
Dependencies
In the example I am going to use the latest 1.1-SNAPSHOT
of Apache Flink.
That's why the Apache Development Snapshot Repository must be added to the projects POM
file.
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.1-SNAPSHOT</flink.version>
</properties>
<repositories>
<repository>
<id>apache.snapshots</id>
<name>Apache Development Snapshot Repository</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
Once the Snapshot repository is added, the Flink dependencies can be added to the POM file.
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.10</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.10</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
Generating Measurements with a SourceFunction
Apache Flink can ingest data from almost any source. In this example a custom SourceFunction is used to serve the Apache Flink DataStream API.
In the example LocalWeatherDataSourceFunction
the CSV data is read with JTinyCsvParser and mapped into the Elasticsearch data representation. Each LocalWeatherData
element of the Stream is then emitted to the SourceContext.
An implementation of the SourceFunction must react on the cancel
notification, so the SourceFunction is designed accordingly.
// Copyright (c) Philipp Wagner. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
package stream.sources;
import converter.LocalWeatherDataConverter;
import csv.parser.Parsers;
import elastic.model.LocalWeatherData;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.nio.charset.StandardCharsets;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.util.Iterator;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class LocalWeatherDataSourceFunction implements SourceFunction<elastic.model.LocalWeatherData> {
private volatile boolean isRunning = true;
private String stationFilePath;
private String localWeatherDataFilePath;
public LocalWeatherDataSourceFunction(String stationFilePath, String localWeatherDataFilePath) {
this.stationFilePath = stationFilePath;
this.localWeatherDataFilePath = localWeatherDataFilePath;
}
@Override
public void run(SourceFunction.SourceContext<elastic.model.LocalWeatherData> sourceContext) throws Exception {
// The Source needs to be Serializable, so we have to construct the Paths at this point:
final Path csvStationPath = FileSystems.getDefault().getPath(stationFilePath);
final Path csvLocalWeatherDataPath = FileSystems.getDefault().getPath(localWeatherDataFilePath);
// Get the Stream of LocalWeatherData Elements in the CSV File:
try(Stream<elastic.model.LocalWeatherData> stream = getLocalWeatherData(csvStationPath, csvLocalWeatherDataPath)) {
// We need to get an iterator, since the SourceFunction has to break out of its main loop on cancellation:
Iterator<elastic.model.LocalWeatherData> iterator = stream.iterator();
// Make sure to cancel, when the Source function is canceled by an external event:
while (isRunning && iterator.hasNext()) {
sourceContext.collect(iterator.next());
}
}
}
@Override
public void cancel() {
isRunning = false;
}
private Stream<elastic.model.LocalWeatherData> getLocalWeatherData(Path csvStationPath, Path csvLocalWeatherDataPath) {
// A map between the WBAN and Station for faster Lookups:
final Map<String, csv.model.Station> stationMap = getStationMap(csvStationPath);
// Turns the Stream of CSV data into the Elasticsearch representation:
return getLocalWeatherData(csvLocalWeatherDataPath)
// Only use Measurements with a Station:
.filter(x -> stationMap.containsKey(x.getWban()))
// And turn the Station and LocalWeatherData into the ElasticSearch representation:
.map(x -> {
// First get the matching Station:
csv.model.Station station = stationMap.get(x.getWban());
// Convert to the Elastic Representation:
return LocalWeatherDataConverter.convert(x, station);
});
}
private static Stream<csv.model.LocalWeatherData> getLocalWeatherData(Path path) {
return Parsers.LocalWeatherDataParser().readFromFile(path, StandardCharsets.US_ASCII)
.filter(x -> x.isValid())
.map(x -> x.getResult());
}
private static Stream<csv.model.Station> getStations(Path path) {
return Parsers.StationParser().readFromFile(path, StandardCharsets.US_ASCII)
.filter(x -> x.isValid())
.map(x -> x.getResult());
}
private Map<String, csv.model.Station> getStationMap(Path path) {
try (Stream<csv.model.Station> stationStream = getStations(path)) {
return stationStream
.collect(Collectors.toMap(csv.model.Station::getWban, x -> x));
}
}
}
Persisting the Processed data with a RichSinkFunction
The output of a DataStream can be consumed with a RichSinkFunction. A RichSinkFunction is a function, which offers an additional open
and close
method.
The example BaseElasticSearchSink
wraps the ElasticSearchClient
from the ElasticUtils library.
Apache Flink serializes and distributes the RichSinkFunction to each of its workers. That's why the ElasticSearchClient
is created inside of the RichSinkFunction, because all of its members need to be Serializable.
// Copyright (c) Philipp Wagner. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
package stream.sinks;
import de.bytefish.elasticutils.client.ElasticSearchClient;
import de.bytefish.elasticutils.client.IElasticSearchClient;
import de.bytefish.elasticutils.client.bulk.configuration.BulkProcessorConfiguration;
import de.bytefish.elasticutils.client.bulk.options.BulkProcessingOptions;
import de.bytefish.elasticutils.mapping.IElasticSearchMapping;
import de.bytefish.elasticutils.utils.ElasticSearchUtils;
import elastic.mapping.LocalWeatherDataMapper;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.cluster.node.DiscoveryNode;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.indices.IndexAlreadyExistsException;
import java.net.InetAddress;
import java.util.List;
import java.util.concurrent.TimeUnit;
public abstract class BaseElasticSearchSink<TEntity> extends RichSinkFunction<TEntity> {
private final String host;
private final int port;
private final int bulkSize;
private IElasticSearchClient<TEntity> client;
public BaseElasticSearchSink(String host, int port, int bulkSize) {
this.host = host;
this.port = port;
this.bulkSize = bulkSize;
this.client = null;
}
@Override
public void invoke(TEntity entity) throws Exception {
client.index(entity);
}
@Override
public void open(Configuration parameters) throws Exception {
// Create the Transport Client:
TransportClient transportClient = createClient();
// Create Index:
createIndexAndMapping(transportClient);
// Finally create the Client:
BulkProcessingOptions options = BulkProcessingOptions.builder()
.setBulkActions(bulkSize)
.build();
client = new ElasticSearchClient<>(transportClient, getIndexName(), new LocalWeatherDataMapper(), new BulkProcessorConfiguration(options));
}
@Override
public void close() throws Exception {
client.awaitClose(10, TimeUnit.SECONDS);
}
protected abstract String getIndexName();
protected abstract IElasticSearchMapping getMapping();
private TransportClient createClient() throws Exception {
// Create a new Connection:
TransportClient client = TransportClient.builder().build()
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(host), port));
// Ensure we have connected nodes:
List<DiscoveryNode> nodes = client.connectedNodes();
if (nodes.isEmpty()) {
throw new RuntimeException("Client is not connected to any Elasticsearch nodes!");
}
return client;
}
private void createIndexAndMapping(Client client) {
// Create the Index and Mappings before indexing the entities:
try {
createIndex(client, getIndexName());
createMapping(client, getIndexName(), getMapping());
} catch (IndexAlreadyExistsException e) {
// No need to worry. Someone else has already initialized the Elasticsearch database...
}
}
private void createIndex(Client client, String indexName) {
if (!ElasticSearchUtils.indexExist(client, indexName).isExists()) {
ElasticSearchUtils.createIndex(client, indexName);
}
}
private void createMapping(Client client, String indexName, IElasticSearchMapping mapping) {
if (ElasticSearchUtils.indexExist(client, indexName).isExists()) {
ElasticSearchUtils.putMapping(client, indexName, mapping);
}
}
}
Now the implementation for the LocalWeatherData
is easy.
// Copyright (c) Philipp Wagner. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
package stream.sinks;
import de.bytefish.elasticutils.client.bulk.options.BulkProcessingOptions;
import de.bytefish.elasticutils.mapping.IElasticSearchMapping;
public class LocalWeatherDataElasticSearchSink extends BaseElasticSearchSink<elastic.model.LocalWeatherData> {
public LocalWeatherDataElasticSearchSink(String host, int port, int bulkSize) {
super(host, port, bulkSize);
}
@Override
protected String getIndexName() {
return "weather_data";
}
@Override
protected IElasticSearchMapping getMapping() {
return new elastic.mapping.LocalWeatherDataMapper();
}
}
Processing the Data with a DataStream
Now it's time to connect the pieces. I have commented the code thoroughly.
// Copyright (c) Philipp Wagner. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
package app;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import stream.sinks.LocalWeatherDataElasticSearchSink;
import stream.sources.LocalWeatherDataSourceFunction;
import java.util.Date;
import java.util.concurrent.TimeUnit;
public class WeatherDataStreamingExample {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// Use the Measurement Timestamp of the Event:
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// Path to read the CSV data from:
final String csvStationDataFilePath = "C:\\Users\\philipp\\Downloads\\csv\\201503station.txt";
final String csvLocalWeatherDataFilePath = "C:\\Users\\philipp\\Downloads\\csv\\201503hourly.txt";
// Add the CSV Data Source and assign the Measurement Timestamp:
DataStream<elastic.model.LocalWeatherData> localWeatherDataDataStream = env
.addSource(new LocalWeatherDataSourceFunction(csvStationDataFilePath, csvLocalWeatherDataFilePath))
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<elastic.model.LocalWeatherData>() {
@Override
public long extractAscendingTimestamp(elastic.model.LocalWeatherData localWeatherData) {
Date measurementDate = localWeatherData.dateTime;
return measurementDate.getTime();
}
});
// Now Perform the Analysis for the daily maximum value on the Stream:
DataStream<elastic.model.LocalWeatherData> dailyMaxTemperature = localWeatherDataDataStream
// Filte for Non-Null Temperature Values, because we might have missing data:
.filter(new FilterFunction<elastic.model.LocalWeatherData>() {
@Override
public boolean filter(elastic.model.LocalWeatherData localWeatherData) throws Exception {
return localWeatherData.temperature != null;
}
})
// Now create the keyed stream by the Station WBAN identifier:
.keyBy(new KeySelector<elastic.model.LocalWeatherData, String>() {
@Override
public String getKey(elastic.model.LocalWeatherData localWeatherData) throws Exception {
return localWeatherData.station.wban;
}
})
// Create a Tumbling Window with the values of 1 day:
.timeWindow(Time.of(1, TimeUnit.DAYS))
// Use the max Temperature of the day:
.max("temperature")
// And perform an Identity map, because we want to write all values of this day to the Database:
.map(new MapFunction<elastic.model.LocalWeatherData, elastic.model.LocalWeatherData>() {
@Override
public elastic.model.LocalWeatherData map(elastic.model.LocalWeatherData localWeatherData) throws Exception {
return localWeatherData;
}
});
// Add a new ElasticSearch Sink:
dailyMaxTemperature.addSink(new LocalWeatherDataElasticSearchSink("127.0.0.1", 9300, 100));
// Finally execute the Stream:
env.execute("Max Temperature By Day example");
}
}